Picard’s Little Theorem

Matt Rosenzweig

Regarding notation, \(\mathbb{H}^+ = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \) denotes the upper half-plane. For \(\tau \in \mathbb{H}^+ \) and \(\Lambda = \mathbb{Z} + \tau : \mathbb{Z} \), the function \(\wp : \mathbb{C} \setminus \Lambda \rightarrow \mathbb{C} \) denotes the Weierstrass \(\wp \)-function given by

\[
\wp(z; \tau) = \frac{1}{z^2} + \sum_{(m, n) \neq (0, 0)} \frac{1}{(z + m + n\tau)^2} - \frac{1}{(m + n\tau)^2}
\]

The modular function \(\lambda \) is defined by

\[
\lambda(\tau) = \frac{\wp \left(\frac{z + 1}{2}; \tau \right) - \wp \left(\frac{z}{2}; \tau \right)}{\wp \left(\frac{1}{2} \right) - \wp \left(\frac{1}{2} \right)} \quad \forall \tau \in \mathbb{H}^+
\]

Define (this is Ahlfors’ notation)

\[
\Omega = \left\{ z \in \mathbb{C} : \left| z - \frac{1}{2} \right| > \frac{1}{2}, 0 < \text{Re}(z) < 1 \right\}; \Omega' = \left\{ z \in \mathbb{C} : \left| z + \frac{1}{2} \right| > \frac{1}{2}, -1 < \text{Re}(z) < 0 \right\}
\]

Taking the closure in \(\mathbb{H}^+ \), we have the following result:

Lemma 1. \(\overline{\Omega} \cup \Omega' \) is a fundamental region for \(\Gamma(2) \).

Proof. See Theorem 8, pg. 281, Ahlfors’ Complex Analysis (Third Edition).

Lemma 2. The modular function \(\lambda \) maps \(\overline{\Omega} \cup \Omega' \) conformally onto \(\mathbb{C} \setminus \{0, 1\} \).

Lemma 3. The modular function \(\lambda : \mathbb{H}^+ \rightarrow \mathbb{C} \setminus \{0, 1\} \) is the universal cover of \(\mathbb{C} \setminus \{0, 1\} \).

Proof. We first remark that if \(\lambda : \mathbb{H}^+ \rightarrow \mathbb{C} \setminus \{0, 1\} \) is a covering space, then since \(\mathbb{H}^+ \) is convex and hence simply connected, \(\lambda : \mathbb{H}^+ \rightarrow \mathbb{C} \setminus \{0, 1\} \) is the universal cover of \(\mathbb{C} \setminus \{0, 1\} \).

Fix \(p \in \mathbb{C} \setminus \{0, 1\} \). Since \(\lambda \) maps the region \(\overline{\Omega} \cup \Omega' \) (where we use Ahlfors’ notation) conformally onto \(\mathbb{C} \setminus \{0, 1\} \), there exists a unique point \(w \in \overline{\Omega} \cup \Omega' \) such that \(\lambda(w) = p \). By adjusting our fundamental region, we may assume without loss of generality that \(w \) lies in interior of \(\overline{\Omega} \cup \Omega' \). Let \(U \ni w \) be an open neighborhood completely contained in the interior of \(\overline{\Omega} \cup \Omega' \). By the open mapping theorem, \(\lambda(U) = V \) is an open neighborhood of \(p \). Consider \(\lambda^{-1}(V) \subset \mathbb{H}^+ \). I claim that

\[
\lambda^{-1}(V) = \prod_{\gamma \in \Gamma(2)} \gamma \cdot U
\]

First observe that since \(U \) is contained in the interior of \(\overline{\Omega} \cup \Omega' \), \(\gamma \cdot U \cap U = \emptyset \) for \(\gamma \neq \text{Id} \in \Gamma(2) \). Recall that each point in \(\mathbb{H}^+ \) is equivalent under \(\Gamma(2) \) to exactly one point in \(\overline{\Omega} \cup \Omega' \). Hence,

\[
z \in \lambda^{-1}(V) \iff \gamma(z) \in \lambda^{-1}(V) \cap (\overline{\Omega} \cup \Omega') \quad \text{for some} \ \gamma \in \Gamma(2) \iff \gamma(z) \in U
\]

since \(\lambda \) is a bijective on \(\overline{\Omega} \cup \Omega' \). Linear fractional transformations are automorphisms, hence \(\gamma \cdot U \) is open \(\forall \gamma \in \Gamma(2) \). \(\lambda : U \rightarrow V \) is a continuous, bijective open map and therefore a homeomorphism. Since \(\lambda \) is invariant under \(\Gamma(2) \), we conclude that \(\lambda \) maps \(\gamma \cdot U \) homeomorphically onto \(V \) \(\forall \gamma \in \Gamma(2) \).

We will need the following topological lemma:

Lemma 4. Suppose that \(p : X \rightarrow Y \) is a covering map, \(D \) is a path-connected, locally path-connected and simply connected topological space, and \(f : D \rightarrow Y \) is continuous. Suppose that \(a \in D \). Fix \(x_0 \in X \) with \(p(x_0) = f(a) \). Then there exists a unique continuous function \(\tilde{f} : D \rightarrow X \) such that \(f(a) = x_0 \) and \(p \circ \tilde{f} = f \).

Proof. See Lemma 79.1 (General Lifting Lemma), pg. 479 in Munkres’ Topology (Second Edition).
Lemma 5. Let $\Omega, V \subset \mathbb{C}$ be regions and $p : \Omega \to V$ be a holomorphic covering map. If $f : \mathbb{C} \to V$ is holomorphic, then for each $a \in \mathbb{C}$ and $z \in \Omega$ such that $p(z) = f(a)$, there exists a unique holomorphic function $\tilde{f} : \mathbb{C} \to \Omega$ such that $\tilde{f}(a) = z$ and $p \circ \tilde{f} = f$.

Proof. The preceding lemma tells us that there is a unique continuous function $\tilde{f} : \mathbb{C} \to V$ such that $\tilde{f}(a) = z$ and $p \circ \tilde{f} = f$. We show that \tilde{f} is holomorphic. Fix $w \in \mathbb{C}$. Since p is a covering map, there exists an open neighborhood $W \ni f(w)$ whose preimage is the disjoint union of open sets in Ω, each mapped homeomorphically onto W. In particular, there exists an open neighborhood $U \ni \tilde{f}(w)$, such that $p : U \to W$ is conformal. Hence, p has a local holomorphic inverse $p^{-1} : W \to U$. The open mapping theorem and the fact that U is open tells us that $D(\tilde{f}(w); r) \subset U$ for $r > 0$ sufficiently small. Therefore

$$p^{-1} \circ f(w') = p^{-1} \circ (p \circ \tilde{f})(w') = \tilde{f}(w') \forall w' \in \tilde{f}^{-1}(D(\tilde{f}(w); r))$$

Since \tilde{f} is continuous, $\tilde{f}^{-1}(D(\tilde{f}(w); r))$ is an open neighborhood of w. We conclude that \tilde{f} is holomorphic in a neighborhood of w. Since $w \in \mathbb{C}$ was arbitrary, we conclude that \tilde{f} is holomorphic.

Theorem 6. (Picard) Let $f : \mathbb{C} \to \mathbb{C}$ be an entire holomorphic function. If there exist $w_1 \neq w_2 \in \mathbb{C}$ such that $f(\mathbb{C}) \subset \mathbb{C} \setminus \{w_1, w_2\}$, then f is constant.

Proof. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire holomorphic function which omits two values $w_1 \neq w_2$. Replacing f by

$$g(z) = \frac{f(z) - w_1}{w_2 - w_1}$$

we may assume that $f(\mathbb{C}) \subset \mathbb{C} \setminus \{0, 1\}$. Since $\lambda : \mathbb{H}^+ \to \mathbb{C} \setminus \{0, 1\}$ is the universal cover of $\mathbb{C} \setminus \{0, 1\}$, the preceding lemma tells us that f lifts to a map $\tilde{f} : \mathbb{C} \to \mathbb{H}^+$ such that $\lambda \circ \tilde{f} = f$. Let $\psi : \mathbb{H}^+ \to \mathbb{D}$ be a conformal map from the upper-half plane onto the unit disk. Then $\psi \circ \tilde{f}$ is a bounded entire function and therefore constant by Liouville’s theorem. Since ψ is bijective, \tilde{f} is constant, from which we conclude that f is constant.

\square