Hörmander's Staircase

Matt Rosenzweig

Abstract

We construct the function known as Hörmander's staircase used in his proof of the MalgrangeEhrenpreis theorem, which states that every non-zero linear differential operator with constant coefficients has a fundamental solution.

We will need the following lemma from complex analysis.
Lemma 1. Let $P\left(z_{1}, \cdots, z_{d}\right)$ be a polynomial in \mathbb{C}^{d} such that for any fixed $w=\left(z_{2}, \cdots, z_{d}\right)$, the polynomial

$$
p_{w}(z)=P\left(z, z_{2}, \cdots, z_{d}\right)
$$

has degree m. Then the roots $\alpha_{1}(w), \cdots, \alpha_{m}(w)$ of $p_{w}(z)$ are continuous functions of w.
Proof. Fix $w_{0} \in \mathbb{C}^{d-1}$, and let $\epsilon>0$ be given. Replacing ϵ a smaller $\epsilon^{\prime}>0$ if necessary, we may assume that $\bar{D}\left(\alpha_{i}\left(w_{0}\right)\right) \cap \bar{D}\left(\alpha_{j}\left(w_{0}\right)\right)=\emptyset$ for all $i \neq j$. Since the argument will be the same for each $\alpha_{j}(w)$, it suffices to show that $\alpha_{1}(w)$ is continuous at $w=w_{0}$. Since $p_{w_{0}}(z)$ vanishes nowhere on $\bar{D}\left(\alpha_{1}\left(w_{0}\right) ; \epsilon\right) \backslash\left\{\alpha_{1}\left(w_{0}\right)\right\}$, $\left|p_{w_{0}}(z)\right|$ attains its minimum at some $z_{1} \in \partial D\left(\alpha_{1}\left(w_{0}\right) ; \epsilon\right)$ and $\left|p_{w_{0}}(z)\right|>0$. Choose $\delta>0$ such that

$$
\left|\left(z_{1}, \cdots, z_{d}\right)-\left(z_{1}^{\prime}, \cdots, z_{d}^{\prime}\right)\right|<\delta \Rightarrow\left|P\left(z_{1}, \cdots, z_{d}\right)-P\left(z_{1}^{\prime}, \cdots, z_{d}\right)\right|<\frac{p_{w_{0}}\left(z_{1}\right)}{2}
$$

We want to show that $p_{w}(z)$ and $p_{w_{0}}(z)$ have the same number of roots for all $\left|w-w_{0}\right|<\delta$. Consider the polynomial $q_{w}(z)$ defined by

$$
q_{w}(z)=p_{w}(z)-p_{w_{0}}(z)
$$

Since

$$
\left|q_{w}(z)\right|=\left|p_{w}(z)-p_{w_{0}}(z)\right|=\left|P(z, w)-P\left(z, w_{0}\right)\right|<\frac{p_{w_{0}}(z)}{2}=p_{w_{0}}(z)
$$

for all $\left|z-\alpha_{1}\left(w_{0}\right)\right|=\epsilon$, it follows from Rouché's theorem that $p_{w_{0}}(z)$ and $q_{w}(z)+p_{w_{0}}(z)=p_{w}(z)$ have the same number of roots in $D\left(\alpha_{1}\left(w_{0}\right) ; \epsilon\right)$. Hence, $p_{w}(z)$ has one root in $D\left(\alpha_{1}\left(w_{0}\right) ; \epsilon\right)$, or equivalently,

$$
w, w_{0} \in \mathbb{C}^{d-1}\left|w-w_{0}\right|<\delta \Rightarrow\left|\alpha_{1}(w)-\alpha_{w_{0}}(w)\right|<\epsilon
$$

Proposition 2. (Hörmander's Staircase) There exists a function $n: \mathbb{R}^{d-1} \rightarrow \mathbb{Z}, \xi^{\prime} \mapsto n\left(\xi^{\prime}\right)$ such that

1. $\left|n\left(\xi^{\prime}\right)\right| \leq m+1$ for all ξ^{\prime}.
2. If $\operatorname{Im}\left(\xi_{1}\right)=n\left(\xi^{\prime}\right)$, then $\left|\xi_{1}-\alpha_{j}\left(\xi^{\prime}\right)\right| \geq 1$ for $j=1, \cdots, m$.
3. The function n is Borel measurable.

Proof. Recall that $p(z)=P\left(z, \xi^{\prime}\right)$, which has m roots. Consider the disjoint intervals

$$
I_{l}:=(-m-1+2 l,-m-1+2(l+1)], \quad l=0, \cdots, m
$$

Since there are $m+1$ disjoint intervals and m points $\alpha_{1}\left(\xi^{\prime}\right), \cdots, \alpha_{m}\left(\xi^{\prime}\right)$, there exists l such that

$$
\operatorname{Im}\left(\alpha_{i}\left(\xi^{\prime}\right)\right) \notin I_{l}, \quad \forall i=1, \cdots, m
$$

Choose $n\left(\xi^{\prime}\right)$ to be the midpoint of this I_{l}. This gives us property (2). Clearly, $\left|n\left(\xi^{\prime}\right)\right| \leq m+1$ for all ξ^{\prime}, which gives us property (1). For measurability, the preceding lemma tells us that the functions $\xi^{\prime} \mapsto \alpha_{i}\left(\xi^{\prime}\right)$ are continuous from $\mathbb{C}^{d-1} \rightarrow \mathbb{C}$.

