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Definition 1. We say that a subset S ⊂ R has measure zero or is a null set if for any ε > 0, there exists a
countable collection of open (it doesn’t really matter) intervals {Ij}∞j=1 such that

S ⊂
∞⋃
j=1

Ij and

∞∑
j=1

|Ij | < ε,

where, if Ij = (aj , bj), |Ij | := bj − aj .

Proposition 2. The countable collection of null sets is again a null set.

Proof. Suppose we have a countable collection {An}∞n=1 of null sets, and let ε > 0 be given. By definition of
measure zero, for each n ∈ Z≥1, there exists a countable collection of open intervals {In,j}∞j=1 such that

An ⊂
∞⋃
j=1

In,j and

∞∑
j=1

|In,j | <
ε

2n

Since the countable union of a countable set is itself countable, we have that {In,j : 1 ≤ n ≤ ∞, 1 ≤ j ≤ ∞} is a
countable collection of open intervls. Summing a geometric series, we obtain that

∞⋃
n=1

An ⊂
∞⋃

n=1

∞⋃
j=1

In,j and

∞∑
n=1

∞∑
j=1

|In,j | <
∞∑

n=1

ε

2n
= ε

Exercise 1. Show that any nonempty open subset of R is not a null set.

Definition 3. A property P of real numbers is said to hold almost everywhere or to hold for almost all x if
the S, where the property P does not hold, has measure zero.

Definition 4. A Baire space is a topological space (X, τ) with the property that the countably intersection of
dense open sets is again dense. We say that a set A in a topological space (X, τ) is nowhere dense if X \ A,
where A denotes the closure of A in X, is a dense open set. Equivalently, A is nowhere dense if it has empty
interior. If A is the countable union of nowhere dense sets, then we say that A is of first category or is meage.
If A is not of first category, then we say that A is of second category or nonmeagre.

We say that a property P holds quasi-everywhere in a topological space if the set of points where P does
not hold is meagre.

The reader can easily verify that the countable union of meagre sets is again meagre.

Theorem 5. (Baire) Let (X, d) be a complete metric space. Then X endowed with the metric topology is a Baire
space.

Proof. Let (On)∞n=1 be a countable collection of dense open sets. Let B ⊂ X be an arbitrary open ball. We will
show that B ∩

⋂∞
n=1On 6= ∅. Since O1 is dense, B ∩O1 6= ∅ and is open. Thus, there exists a ball B1 such that

B1 ⊂ B1 ⊂ B ∩O1

Suppose we have chosen open balls B1, · · · , Bn such that

Bj+1 ⊂ Bj ∩Oj+1

Since On+1 is dense, Bn ∩On+1 6= ∅ is open. Hence, there exists an open ball Bn+1 such that

Bn+1 ⊂ Bn+1 ⊂ Bn ∩On+1

By induction, we obtain a shrinking sequence of open balls (Bn)∞n=1 such that Bn+1 ⊂ Bn. I claim that⋂∞
n=1Bn 6= ∅. Without loss of generality, we may assume that diam(Bn) → 0, n → ∞. For each n, let (xn)n∈N

be a sequence such that xn ∈ Bn. Then (xn) is Cauchy and by completeness of X, there exists x ∈ X such that
xn → x. It is immediate that x ∈

⋂∞
n=1Bn. By construction, x ∈ B ∩

⋂∞
n=1On.
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We now show that if our topological space is R equipped with the Euclidean metric topology, then “quas-
everywhere” is not equivalent to “almost everywhere.”

Theorem 6. There exists a property P about real numbers such P that holds quasi-everywhere and ¬P holds
almost everywhere.

Proof. Since we can take the property P to be x ∈ A for some set A ⊂ R, it suffices to show that there exists
a subset A ⊂ R such that A has measure zero and R \ A is meagre. Let {an}∞n=1 be an enumeration of Q. For
each (i, j) ∈ Z≥1 × Z≥1, let

Iij :=

(
ai −

1

2i+j+1
, ai +

1

2i+j+1

)
Define a countable collection of open sets (Oj)

∞
j=1 by

Oj :=

∞⋃
i=1

Iij

I claim that
⋂∞

j=1Oj has measure zero. Indeed, for any k ∈ Z≥1,

∞⋂
j=1

Oj ⊂ Ok =

∞⋃
j=1

Ijk and

∞∑
j=1

|Ijk| =
∞∑
j=1

1

2k+j
=

1

2k
→ 0, k →∞

Set Fj := X \Oj , which is tautologically closed. I claim that Fj is nowhere dense for each j ∈ Z≥1. Otherwise by
the density of Q in R, ∅ 6= (x− r, x+ r) ∩Q ⊂ Fj ∩Q for some x ∈ Fj , which is a contradiction. Thus,

⋃∞
j=1 Fj

is meagre. Setting A :=
⋂∞

j=1Oj gives us the desired set.
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